These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Installation/modulation of the emission response via click reaction. Author: Bag SS, Kundu R. Journal: J Org Chem; 2011 May 06; 76(9):3348-56. PubMed ID: 21401103. Abstract: We have demonstrated the installation of a fluorescence property into a nonfluorescent precursor and modulation of an emission response of a pyrene fluorophore via click reaction. The synthesized fluorophores show different solvatochromicity and/or intramolecular charge transfer (ICT) feature as is revealed from the UV-visible, fluorescence photophysical properties of these fluorophores, and DFT/TDDFT calculation. We observed that some of the synthesized fluorophores showed purely ICT character while emission from some of them arose from the LE state. A structureless and solvent polarity-sensitive dual emission behavior was observed for one of the triazolylpyrene fluorophores that contains an electron-donating -NMe(2) substituent (fluorophore, 7a). Conversely, triazolylpyrene with an electron-withdrawing -CN group (fluorophore, 7b) showed a solvent polarity-independent vibronic emission. The effect of ICT on the photophysical properties of these fluorophores was studied by fluorescence emission spectra and DFT/TDDFT calculations. Fluorescence lifetimes were also measured in different solvents. All of our findings revealed the delicate interplay of structure and emission properties and thus having broader general utility. As the CT to LE intensity ratio can be employed as a sensing index, the dual emissive fluorophore can be utilized in designing the molecular recognition system too. We envisage that our investigation is of importance for the development of new fluorophores with predetermined photophysical properties that may find a wide range of applications in chemistry, biology, and material sciences.[Abstract] [Full Text] [Related] [New Search]