These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Respiratory muscle electromyogram responses to acute hypoxia in awake ponies. Author: Brice AG, Forster HV, Pan LG, Lowry TF, Murphy CL. Journal: J Appl Physiol (1985); 1990 Mar; 68(3):1024-32. PubMed ID: 2140345. Abstract: We determined the effect of acute hypoxia on the ventilatory (VE) and electromyogram (EMG) responses of inspiratory (diaphragm) and expiratory (transversus abdominis) muscles in awake spontaneously breathing ponies. Eleven carotid body-intact (CBI) and six chronic carotid body-denervated (CBD) ponies were studied during normoxia (fractional inspired O2 concn [FIO2] = 0.21) and two levels of hypoxia (FIO2 approximately 0.15 and 0.12; 6-10 min/period). Four CBI and five CBD ponies were also hilar nerve (pulmonary vagal) denervated. Mean VE responses to hypoxia were greater in CBI ponies (delta arterial PCO2 = -4 and -7 Torr in CBI during hypoxic periods; -1 and -2 Torr in CBD). Hypoxia increased the rate of rise and mean activity of integrated diaphragm EMG in CBI (P less than 0.05) and CBD (P greater than 0.05) ponies relative to normoxia. Duration of diaphragm activity was reduced in CBI (P less than 0.05) but unchanged in CBD ponies. During hypoxia in both groups of ponies, total and mean activities per breath of transversus abdominis were reduced (P less than 0.05) without a decrease in rate of rise in activity. Time to peak and total duration of transversus abdominis activity were markedly reduced by hypoxia in CBI and CBD ponies (P less than 0.05). Hilar nerve denervation did not alter the EMG responses to hypoxia.(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]