These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of intracellular calcium concentration and protein kinase C activation in IFN-gamma stimulation of U937 cells.
    Author: Klein JB, Schepers TM, Dean WL, Sonnenfeld G, McLeish KR.
    Journal: J Immunol; 1990 Jun 01; 144(11):4305-11. PubMed ID: 2140394.
    Abstract:
    IFN-gamma enhances many monocyte functions, including oxidative metabolism and Ag presentation. IFN-gamma has been reported to increase the intracellular concentration of calcium ([Ca2+]i) and modulate protein kinase C activity in murine macrophages, but the signal transduction pathways induced by IFN-gamma in human cells and their functional significance are poorly understood. Our study examined the hypothesis that an increases in [Ca2+]i and protein kinase C activation are required for functional responses to IFN-gamma. The U937 cell line was used as a model of an IFN-gamma responsive cell. IFN-gamma caused a rapid and concentration-dependent increase in [Ca2+]i, which was partly inhibited by calcium-free medium, diltiazem, and TMB-8. IFN-gamma induced a fourfold increase in the concentration of inositol 1,4,5-trisphosphate. Induction of HLA-DR, Fc gamma R, CR3, and Mo3e Ag expression by IFN-gamma was blocked by concentrations of TMB-8 that inhibited an increase in [Ca2+]i, but not by protein kinase C inhibition by H-7 or inhibition of calmodulin with W-7. Ionomycin did not enhance Ag expression and PMA induced the expression of only the Mo3e Ag. We conclude that IFN-gamma induces antigenic expression on human U937 cells by a mechanism dependent on, but not limited to, an increase in intracellular calcium, which is likely due to inositol 1,4,5-trisphosphate generation.
    [Abstract] [Full Text] [Related] [New Search]