These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ameliorative action of melatonin on oxidative damage induced by atrazine toxicity in rat erythrocytes. Author: Bhatti JS, Sidhu IP, Bhatti GK. Journal: Mol Cell Biochem; 2011 Jul; 353(1-2):139-49. PubMed ID: 21404018. Abstract: Excessive generation of reactive oxygen species (ROS) can induce oxidative damage to vital cellular molecules and structures including DNA, lipids, proteins, and membranes. Recently, melatonin has attracted attention because of their free radical scavenging and antioxidant properties. The aim of this study was to evaluate the possible protective role of melatonin against atrazine-induced oxidative stress in rat erythrocytes in vivo. Adult male albino rats of Wistar strain were randomly divided into four groups. Control group received isotonic saline; melatonin (10 mg/kg bw/day) group; atrazine (300 mg/kg of bw/day) group; atrazine + melatonin group. Oral administration of atrazine and melatonin was given daily for 21 days. Oxidative stress was assessed by determining the glutathione (GSH) and malondialdehyde (MDA) level, and alteration in antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione-S-transferase (GST), and glucose-6-phosphate dehydrogenase (G-6-PD) in the erythrocytes of normal and experimental animals. A significant increase in the MDA levels and decrease in the GSH was observed in the atrazine treated animals (P < 0.05). Also, significant increase in the activities of SOD, CAT, GPx, and GST were observed in atrazine treated group compared to controls (P < 0.05). Moreover, significant decrease in protein, total lipids, cholesterol, and phospholipid content in erythrocyte membrane were demonstrated in atrazine treated rats. Administration of atrazine significantly inhibits the activities of G-6-PD and membrane ATPases such as Na(+)/K(+)-ATPase, Mg(2+)-ATPase, and Ca(2+)-ATPase (P < 0.05). Scanning electron microscopic (SEM) examination of erythrocytes revealed morphological alterations in the erythrocytes of atrazine treated rats. Furthermore, supplementation of melatonin significantly modulates the atrazine-induced changes in LPO level, total lipids, total ATPases, GSH, and antioxidant enzymes in erythrocytes. In conclusion, the increase in oxidative stress markers and the concomitant alterations in antioxidant defense system indicate the role of oxidative stress in erythrocytes of atrazine-induced damage. Moreover, melatonin shows a protective role against atrazine-induced oxidative damage in rat erythrocytes.[Abstract] [Full Text] [Related] [New Search]