These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Resonant plankton patchiness induced by large-scale turbulent flow.
    Author: McKiver WJ, Neufeld Z.
    Journal: Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 2):016303. PubMed ID: 21405770.
    Abstract:
    Here we study how large-scale variability of oceanic plankton is affected by mesoscale turbulence in a spatially heterogeneous environment. We consider a phytoplankton-zooplankton (PZ) ecosystem model, with different types of zooplankton grazing functions, coupled to a turbulent flow described by the two-dimensional Navier-Stokes equations, representing large-scale horizontal transport in the ocean. We characterize the system using a dimensionless parameter, γ=T(B)/T(F), which is the ratio of the ecosystem biological time scale T(B) and the flow time scale T(F). Through numerical simulations, we examine how the PZ system depends on the time-scale ratio γ and find that the variance of both species changes significantly, with maximum phytoplankton variability at intermediate mixing rates. Through an analysis of the linearized population dynamics, we find an analytical solution based on the forced harmonic oscillator, which explains the behavior of the ecosystem, where there is resonance between the advection and the ecosystem predator-prey dynamics when the forcing time scales match the ecosystem time scales. We also examine the dependence of the power spectra on γ and find that the resonance behavior leads to different spectral slopes for phytoplankton and zooplankton, in agreement with observations.
    [Abstract] [Full Text] [Related] [New Search]