These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of a high-protein diet on ghrelin, growth hormone, and insulin-like growth factor-I and binding proteins 1 and 3 in subjects with type 2 diabetes mellitus.
    Author: Gannon MC, Nuttall FQ.
    Journal: Metabolism; 2011 Sep; 60(9):1300-11. PubMed ID: 21406307.
    Abstract:
    We have developed a diet that over 5 weeks dramatically lowers plasma glucose in people with type 2 diabetes mellitus. This diet consists of 30% carbohydrate, 30% protein, and 40% fat and is referred to as a Low Biologically Available Glucose (LoBAG) diet. The diet also resulted in an approximately 30% increase in fasting insulin-like growth factor-I (IGF-I). Thus, we were interested in determining if the IGF-I elevation was due to an increase in ghrelin and growth hormone (GH) or to a change in IGF-I binding proteins (IGFBPs). Eight men with type 2 diabetes mellitus ingested a control diet (15% protein, 55% carbohydrate, and 30% fat) and a LoBAG(30) diet for 5 weeks in a randomized crossover design with a washout period in between. Before and after each 5-week period, subjects had blood drawn for total glycated hemoglobin and, at several time points over 24 hours, for GH, IGF-I, IGFBP-1, IGFBP-3, ghrelin, glucose, and insulin. Fasting and 24-hour glucose concentrations and total glycated hemoglobin were decreased, as expected (all Ps < .05). Fasting IGF-I increased by approximately 30% (P = .05) and remained unchanged throughout 24 hours. Ghrelin, GH, IGFBP-1, IGFBP-3, and insulin were not different between diets. Insulin and IGFBP-1 concentrations were reciprocal, as expected. Insulin-like growth factor-I binding protein 1 decreased as insulin increased to greater than approximately 30 to 40 μU/mL. Ingestion of a LoBAG(30) diet by weight-stable subjects with type 2 diabetes mellitus resulted in an increase in total IGF-I without an increase in ghrelin, GH, and IGFBP-3 or a change in IGFBP-1 regulation. The mechanism remains to be determined.
    [Abstract] [Full Text] [Related] [New Search]