These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Oostatic peptides containing D-amino acids: synthesis, oostatic activity, degradation, accumulation in ovaries and NMR study.
    Author: Hlaváček J, Tykva R, Holík J, Bennettová B, Buděšínský M, Vlasáková V, Cerný B, Slaninová J.
    Journal: Amino Acids; 2012 May; 42(5):1715-25. PubMed ID: 21416381.
    Abstract:
    Analogs of the H-Tyr-Asp-Pro-Ala-Pro-OH pentapeptide with D-amino acid residues either in differing or in all of the positions of the sequences were prepared and their oostatic potency was compared with that of the parent pentapeptide. The D-amino acid residue containing analogs exhibited an equal or even higher oostatic effect in the flesh fly Neobellieria bullata than the parent peptide. Contrary to the rapid incorporation of radioactivity from the labeled H-Tyr-Asp-[3H]Pro-Ala-Pro-OH pentapeptide into the ovaries of N. bullata in vitro, the radioactivity incorporation from the labeled pentapeptides with either D-aspartic acid or D-alanine was significantly delayed. As compared to the parent pentapeptide, also the degradation of both the D-amino acid-containing analogs mentioned above proceeded at a significantly lower rate. The decreased intake of radioactivity, the lower degradation and finally also the high oostatic effect may be ascribed to the decreased enzymatic degradation of the peptide bonds neighboring the D-amino acid residues in the corresponding peptides. The introduction of the non-coded D: -amino acids thus enhances the oostatic effect in N. bullata owing to the prolonged half-life of the corresponding pentapeptides, which can thus affect more ovarian cells.
    [Abstract] [Full Text] [Related] [New Search]