These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular binding of black tea theaflavins to biological membranes: relationship to bioactivities. Author: Sirk TW, Friedman M, Brown EF. Journal: J Agric Food Chem; 2011 Apr 27; 59(8):3780-7. PubMed ID: 21417313. Abstract: Molecular dynamics simulations were used to study the interactions of three theaflavin compounds with lipid bilayers. Experimental studies have linked theaflavins to beneficial health effects, some of which are related to interactions with the cell membrane. The molecular interaction of theaflavins with membranes was explored by simulating the interactions of three theaflavin molecules (theaflavin, theaflavin-3-gallate, and theaflavin-3,3'-digallate) with a mixed bilayer composed of 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) and 1-palmitoyl-2-oleoyl phosphatidylethanolamine (POPE). The simulations show that the theaflavins evaluated have an affinity for the lipid bilayer surface via hydrogen bonding. The molecular structure of theaflavins influenced their configuration when binding to the bilayer surface, as well as their ability to form hydrogen bonds with the lipid headgroups. The theaflavin-bilayer interactions studied here help to define structure-function relationships of the theaflavins and provide a better understanding of the role of theaflavins in biological processes. The significance of the results are discussed in the context of black tea composition and bioactivity.[Abstract] [Full Text] [Related] [New Search]