These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Photoluminescent copper(I) complexes with amido-triazolato ligands.
    Author: Manbeck GF, Brennessel WW, Eisenberg R.
    Journal: Inorg Chem; 2011 Apr 18; 50(8):3431-41. PubMed ID: 21417454.
    Abstract:
    A series of heteroleptic copper(I) complexes incorporating amido-triazole and diphosphine ligands, [Cu(I)(N-phenyl-2-(1-phenyl-1H-1,2,3-triazol-4-yl)aniline)(dppb)] (1), [Cu(I)(N-(4-methylphenyl)-2-(1-phenyl-1H-1,2,3-triazol-4-yl)aniline)(dppb)] (2), [Cu(I)(N-(4-methoxyphenyl)-2-(1-phenyl-1H-1,2,3-triazol-4-yl)aniline)(dppb)] (3), [Cu(I)(N-(4-chlorophenyl)-2-(1-phenyl-1H-1,2,3-triazol-4-yl)aniline)(dppb)] (4), [Cu(I)(2,6-dimethyl-N-[2-(1-phenyl-1H-1,2,3-triazol-4-yl)phenyl]aniline)(dppb)] (5), [Cu(I)(2,6-dimethyl-N-[2-(1-benzyl-1H-1,2,3-triazol-4-yl)phenyl]aniline)(dppb)] (6), (dppb = 1,2-bis(diphenylphosphino)benzene), have been prepared. The complexes adopt a distorted tetrahedral geometry in the solid state with the amido-triazole ligand forming a six-member ring with the Cu(I) ion. The complexes exhibit long-lived photoluminescence with colors ranging from yellow to red-orange in the solid state, in frozen glass at 77 K, and in fluid solution with modest quantum yields of up to 0.022. Electrochemically, complexes 1-4 show irreversible oxidation waves while 5 and 6 are characterized by quasi-reversible oxidations as determined by cyclic voltammetry. For 1-4, the emission energy and oxidation potential are found to vary linearly with the Hammett parameter σ(p) of the substituent in the para position of the amido ligand, while in 5 and 6, large differences in emission are observed because of the nature of N3 substitution in the triazole ring. Density functional theory calculations have been performed on the singlet ground states (S(o)) of all complexes at the BP86/6-31G(d) level to assist in assignment of the excited states. On the basis of both experimental and computational results, we have assigned the excited states as intraligand + metal-to-ligand charge transfer (3)(ILCT+MLCT) or ligand-to-ligand charge transfer mixed with MLCT (3)(MLCT +LLCT) in these complexes.
    [Abstract] [Full Text] [Related] [New Search]