These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Correlation between time-dependent inhibition of human farnesyl pyrophosphate synthase and blockade of mevalonate pathway by nitrogen-containing bisphosphonates in cultured cells. Author: Räikkönen J, Taskinen M, Dunford JE, Mönkkönen H, Auriola S, Mönkkönen J. Journal: Biochem Biophys Res Commun; 2011 Apr 22; 407(4):663-7. PubMed ID: 21420384. Abstract: A class of drugs successfully used for treatment of metabolic bone diseases is the nitrogen-containing bisphosphonates (N-BPs), which act by inhibiting the vital enzyme, farnesyl pyrophosphate synthase (FPPS), of the mevalonate pathway. Inhibition of FPPS by N-BPs results in the intracellular accumulation of isopentenyl pyrophosphate (IPP) and consequently induces the biosynthesis of a cytotoxic ATP analog (ApppI). Previous cell-free data has reported that N-BPs inhibit FPPS by time-dependent manner as a result of the conformational change. This associated conformational change can be measured as an isomerization constant (K(isom)) and reflects the binding differences of the N-BPs to FPPS. In the present study, we tested the biological relevance of the calculated K(isom) values of zoledronic acid, risedronate and five experimental N-BP analogs in the cell culture model. We used IPP/ApppI formation as a surrogate marker for blocking of FPPS in the mevalonate pathway. As a result, a correlation between the time-dependent inhibition of FPPS and IPP/ApppI formation by N-BPs was observed. This outcome indicates that the time-dependent inhibition of FPPS enzyme is a biologically significant mechanism and further supports the use of the K(isom) calculations for evaluation of the overall potency of the novel FPPS inhibitors. Additionally, data illustrates that IPP/ApppI analysis is a useful method to monitor the intracellular action of drugs and drug candidates based on FPPS inhibition.[Abstract] [Full Text] [Related] [New Search]