These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Genotoxicity and apoptosis in Drosophila melanogaster exposed to benzene, toluene and xylene: attenuation by quercetin and curcumin. Author: Singh MP, Mishra M, Sharma A, Shukla AK, Mudiam MK, Patel DK, Ram KR, Chowdhuri DK. Journal: Toxicol Appl Pharmacol; 2011 May 15; 253(1):14-30. PubMed ID: 21420423. Abstract: Monocyclic aromatic hydrocarbons (MAHs) such as benzene, toluene and xylene are being extensively used for various industrial and household purposes. Exposure to these hydrocarbons, occupationally or non-occupationally, is harmful to organisms including human. Several studies tested for toxicity of benzene, toluene and xylene, and interestingly, only a few studies looked into the attenuation. We used Drosophila model to test the genotoxic and apoptotic potential of these compounds and subsequently evaluated the efficiency of two phytochemicals, namely, quercetin and curcumin in attenuating test chemical induced toxicity. We exposed third instar larvae of wild type Drosophila melanogaster (Oregon R+) to 1.0-100.0 mM benzene, toluene or xylene, individually, for 12, 24 and 48 h and examined their apoptotic and genotoxic potential. We observed significantly (P<0.001) increased apoptotic markers and genotoxicity in a concentration- and time-dependent manner in organisms exposed to benzene, toluene or xylene. We also observed significantly (P<0.001) increased cytochrome P450 activity in larvae exposed to test chemicals and this was significantly reduced in the presence of 3',4'-dimethoxyflavone, a known Aryl hydrocarbon receptor (AhR) blocker. Interestingly, we observed a significant reduction in cytochrome P450 activity, GST levels, oxidative stress parameters, genotoxic and apoptotic endpoints when organisms were exposed simultaneously to test chemical along with quercetin or curcumin. The study further suggests the suitability of D. melanogaster as an alternate animal model for toxicological studies involving benzene, toluene and xylene and its potential in studying the protective role(s) of phytochemicals.[Abstract] [Full Text] [Related] [New Search]