These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Catalase inhibition into the fourth cerebral ventricle affects bradycardic parasympathetic response to increase in arterial pressure without changing the baroreflex. Author: Valenti VE, De Abreu LC, Sato MA, Fonseca FL, Riera AR, Ferreira C. Journal: J Integr Neurosci; 2011 Mar; 10(1):1-14. PubMed ID: 21425479. Abstract: Exogenous catalase influences neural control of cardiovascular system; however, we do not know yet if its inhibition into the fourth cerebral ventricle (4(th) V) influences baroreflex regulation. We evaluated the effects of central catalase inhibition on baroreflex in conscious Wistar rats. We used males Wistar rats (320-370 g), which were implanted with a stainless steel guide cannula into 4(th) V. The femoral artery and vein were cannulated for mean arterial pressure (MAP) and heart rate (HR) measurement and drug infusion, respectively. After basal MAP and HR recordings, the baroreflex was tested with a pressor dose of phenylephrine (PHE, 8 μg/kg, bolus) and a depressor dose of sodium nitroprusside (SNP, 50 μg/kg, bolus). Baroreflex was evaluated before 5, 15, 30 and 60 minutes after 3-amino-1, 2, 4-triazole (ATZ, 0.001 g/100 μL) injection into the 4(th) V. Vehicle treatment did not change baroreflex responses. ATZ attenuated bradycardic peak and reduced HR range at 30 minutes. ATZ into the 4(th) V reduced bradycardic and tachycardic reflex responses to increase and decrease MAP, respectively (p<0.05) 30 minutes after its microinjection without significantly changing the basal MAP and HR. In conclusion, central catalase inhibition influenced the highest parasympathetic response to MAP increase in conscious Wistar rats without change baroreflex gain.[Abstract] [Full Text] [Related] [New Search]