These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Intracellular pH and calcium signaling as molecular targets of diclofenac-induced apoptosis against colon cancer. Author: Kaur J, Sanyal SN. Journal: Eur J Cancer Prev; 2011 Jul; 20(4):263-76. PubMed ID: 21427588. Abstract: The role of intracellular pH and Ca2+ and their association with mitochondrial dysfunction and intracellular reactive oxygen species (ROS) are explored in the chemoprevention of colon cancer. 1,2-dimethylhydrazine dihydrochloride (DMH), a potent procarcinogen with selectivity for the colon, at a dose of 30 mg/kg body weight was used to induce initial stages of colon cancer when administered for 6 weeks in male Sprague-Dawley rats. Diclofenac, a preferential cyclooxygenase-2 inhibitor, was used at the anti-inflammatory dose (8 mg/kg body weight) for chemoprevention. The control group was administered vehicles for both DMH and diclofenac. A diclofenac-alone group with the same dose was also run simultaneously. Intracellular pH values as determined by biscarboxyethyl carboxyfluorescein fluorescence assay showed an alkaline pH in colonocytes from the DMH-treated group as compared with the control group. Moreover, the level of intracellular Ca2+ was also found to be decreased with DMH treatment, as shown by the fura-2 acetoxymethyl study and chlortetracycline assay. Apoptosis was studied by comet assay and Apaf-1 immunofluorescent expression and was found to be markedly decreased in this group, indicating that disturbances in pH and Ca2+ homeostasis promoted proliferation in colon and inhibited apoptosis. Changes in mitochondrial membrane potential and ROS levels were analyzed in isolated colonocytes by rhodamine 123 and 2,7-dichlorofluorescein diacetate labeling, respectively. DMH treatment promoted a higher mitochondrial membrane potential while reducing ROS levels. These parameters are known to be associated with pH and Ca2+ changes intracellularly and hence can be suggested to be linked with them in this study also. Diclofenac promoted apoptosis in colonocytes when coadministered with DMH and also ameliorated the changes observed in the above parameters, confirming these mechanisms as early events for the onset of apoptosis in cancer cells.[Abstract] [Full Text] [Related] [New Search]