These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Energy dependent dynamics of the O(1D) + HCl reaction: a quantum, quasiclassical and statistical study. Author: Bargueño P, Jambrina PG, Alvariño JM, Menéndez M, Verdasco E, Hankel M, Smith SC, Aoiz FJ, González-Lezana T. Journal: Phys Chem Chem Phys; 2011 May 14; 13(18):8502-14. PubMed ID: 21431209. Abstract: The dynamics of the reaction O((1)D) + HCl → ClO + H, OH + Cl has been investigated in detail by means of a time-dependent wave packet (TDWP) method in comparison with quasiclassical trajectory (QCT) and statistical approaches on the ground potential energy surface by Martínez et al. [Phys. Chem. Chem. Phys., 2000, 2, 589]. Fully coupled quantum mechanical (QM) reaction probabilities for high values of the total angular momentum (J≤ 50) are reported for the first time. At the low collision energy regime (E(c)≤ 0.4 eV) the TDWP probabilities are well reproduced by the QCT and statistical results for the ClO forming product channel, but for the OH + Cl arrangement, only QCT probabilities are found to agree with the QM values. The good accordance found between the rigorous statistical models and the dynamical QM and QCT calculations for the O + HCl → ClO + H process underpins the assumption that the reaction pathway leading to ClO is predominantly governed by a complex-forming mechanism. In addition, to further test the statistical character of this reaction channel, the laboratory angular distribution and time-of-flight spectra obtained in a crossed molecular beam study by Balucani et al. [Chem. Phys. Lett. 1991, 180, 34] at a collision energy as high as 0.53 eV have been simulated using the state resolved differential cross section obtained with the statistical approaches yielding a satisfactory agreement with the experimental results. For the other channel, O + HCl → OH + Cl, noticeable differences between the statistical results and those found with the QCT calculation suggest that the dynamics of the reaction are controlled by a direct mechanism. The comparison between the QCT and QM-TDWP results in the whole range of collision energies lends credence to the QCT description of the dynamics of this reaction.[Abstract] [Full Text] [Related] [New Search]