These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Corrosion resistance and wear resistance of Ni-Cr alloy after coating titanium nitride (TiN) in oral containing fluorine environment].
    Author: Weng WM, Yu WQ, Shan WL, Zhang FQ.
    Journal: Shanghai Kou Qiang Yi Xue; 2010 Dec; 19(6):621-5. PubMed ID: 21431263.
    Abstract:
    PURPOSE: The aim of this study was to evaluate the corrosion resistance and wear resistance of Ni-Cr alloy after coating titanium nitride (TiN) in oral containing fluorine environment. METHODS: Physical vapor deposition was established to coat titanium nitride (TiN) on the surface of dental cast Ni-Cr alloy to form TiN/Ni-Cr compound. Both Ni-Cr alloy and TiN/Ni-Cr compound were exposed to 37 degrees centigrade, artificial saliva containing 0.24% NaF. The polarization curves of the specimens were measured by PARSTAT 2273 electrochemical station to investigate its corrosion resistance. Vicker's hardness was measured by HXD-1000TMC/LCD micro-hardness tester to investigate its wear resistance. Statistical analysis was performed by SAS 8.2 software package for Student's t methods. RESULTS: The corrosion potential of Ni-Cr alloy was -362.407 mV, the corrosion current density was 1.568μAcm(-2),the blunt-breaking potential was 426 mV bofor TiN coating. The corrosion potential of TiN/Ni-Cr compound was -268.638 mV, the corrosion current density was 0.114μAcm(-2),the blunt-breaking potential was 1142 mV after TiN coating. Polarization curves showed TiN/Ni-Cr compound improved the corrosion potential and blunt-breaking potential, decreased the corrosion current density. The Vicker's hardness of Ni-Cr alloy was 519.75±27.27 before TiN coating, the Vicker's hardness of TiN/Ni-Cr compound was 803.24±24.64, the D-value between them was 283.49±39.34. The difference of Vicker's harnesses between Ni-Cr alloy and TiN/Ni-Cr compound had significant (P<0.01). CONCLUSION: The results demonstrate that the TiN coating can improve the corrosion resistant to F-and the surface hardness of Ni-Cr alloy. Supported by Research Fund of Science and Technology Commission of Shanghai Municipality (Grant No.08DZ2271100), Shanghai Leading Academic Discipline Project (Grant No.S30206 ) and Research Fund of Health Bureau of Shanghai Municipality (Grant No.2009074).
    [Abstract] [Full Text] [Related] [New Search]