These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sweat sodium concentration during exercise in the heat in aerobically trained and untrained humans.
    Author: Hamouti N, Del Coso J, Ortega JF, Mora-Rodriguez R.
    Journal: Eur J Appl Physiol; 2011 Nov; 111(11):2873-81. PubMed ID: 21431880.
    Abstract:
    The purpose of this study was to determine whether sweat sodium concentration ([Na(+)](sweat)) during exercise in the heat differs between aerobically trained and untrained individuals. On three occasions, ten endurance-trained (Tr) and ten untrained (UTr) subjects (VO2peak = 4.0 ± 0.8 vs. 3.4 ± 0.7 L min(-1), respectively; P < 0.05) cycled in a hot-ventilated environment (36 ± 1°C; 25 ± 2% humidity, airflow 2.5 m s(-1)) at three workloads (i.e., 40, 60, and 80% VO2peak). Whole-body (SR(WB)) and back sweat rates (SR(BACK)) were measured. At the conclusion of the study, Na(+) in sweat and blood samples was analyzed to calculate Na(+) secretion and reabsorption rates. SR(WB) and SR(BACK) were highly correlated in Tr and UTr (r = 0.74 and 0.79, respectively; P < 0.0001). In both groups, SR(BACK) increased with the increases in exercise intensity (P < 0.05). Likewise, [Na(+)](sweat) increased with the exercise intensity in both groups (P < 0.05) and it tended to be higher in Tr than in UTr at 60 and 80% VO2peak (~22 mmol L(-1) higher; P = 0.06). However, when normalized for SR(BACK), [Na(+)](sweat) was not different between groups. In both groups, Na(+) secretion and reabsorption rates increased with the increases in SR(BACK) (P < 0.05). However, Na(+) reabsorption rate was lower in the Tr than in the UTr (mean slope = 48 vs. 82 ηmol cm(-2) min(-1); P = 0.03). In conclusion, using a cross-sectional study design, our data suggest that aerobic fitness level does not reduce sweat Na(+) secretion or enhance Na(+) reabsorption during prolonged exercise in the heat that induced high sweat rates.
    [Abstract] [Full Text] [Related] [New Search]