These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: TGF-beta signalling pathway factors in HPV-induced cervical lesions.
    Author: Iancu IV, Botezatu A, Goia-Ruşanu CD, Stănescu A, Huică I, Nistor E, Anton G, Pleşa A.
    Journal: Roum Arch Microbiol Immunol; 2010; 69(3):113-8. PubMed ID: 21434587.
    Abstract:
    Human papillomaviruses (HPV) are considered the etiological agents of cervical cancer, especially high-risk genotypes. TGF-beta (transforming growth factor-beta) is well known for its anti-proliferative effects but the neoplastic cells often lose their sensitivity to TGF-beta. A characteristic alteration associated with malignant progression is the loss of responsiveness to TGF-beta1-induced cell growth inhibition. The aim of the present study was to establish the possible role of some members of TGF-beta signalling pathway during cervical cancer development and the possible relationship with HPV infection. In order to establish TGF-beta gene expression levels in cervical oncogenesis, TGF-beta1, TGF-beta1 receptors and Smad2 were investigated in precancerous and cervical cancer samples (Quantitative Real-Time PCR). The study revealed that 84.5% of patients were positive for HPV DNA. The most prevalent HPV genotypes were high-risk HPV 16 and 18 in single or co-infections. Expression of TGF-beta1 decreased as tumor cells progressed from cervical intraepithelial neoplasia to cervical carcinoma. Furthermore, we observed that cervical lesions without HPV infection expressed significantly less TGF-beta1. TGF-betaRI and Smad2 gene expression levels were found to be decreased in SCC and AC samples in contrast with CIN1 and CIN2/3 samples. Our results showed that in human cervical cancer the disruption of TGF-beta/Smad signalling pathway might contribute to the malignant progression of cervical dysplasia. These data emphasize the importance of canonical TGF-beta pathway integrity in carcinogenesis.
    [Abstract] [Full Text] [Related] [New Search]