These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Localization of dopamine D2 receptor mRNA and D1 and D2 receptor binding in the rat brain and pituitary: an in situ hybridization-receptor autoradiographic analysis.
    Author: Mansour A, Meador-Woodruff JH, Bunzow JR, Civelli O, Akil H, Watson SJ.
    Journal: J Neurosci; 1990 Aug; 10(8):2587-600. PubMed ID: 2143777.
    Abstract:
    Several lines of evidence suggest the existence of multiple dopamine receptor subtypes, referred to as D1 and D2. The present study examines the distribution of these dopamine binding sites in the rat brain and pituitary in relation to the distribution of D2 receptor mRNA using a combination of in vitro receptor autoradiographic and in situ hybridization techniques. 3H-Raclopride and 3H-SCH23390 (in the presence of 1 microM ketanserin) were used to label D2 and D1 receptor binding sites, respectively, while a 495 bp cRNA probe synthesized from the Sac I-Bgl II fragment of a rat D2 receptor cDNA was used to visualize the D2 receptor mRNA. Analysis of adjacent tissue sections in which receptor autoradiography and in situ hybridization had been performed revealed several brain regions where the D2 binding site and corresponding mRNA appear to be similarly distributed, including the caudate-putamen, nucleus accumbens, olfactory tubercle, globus pallidus, substantia nigra, and ventral tegmental area. In the pituitary gland, D2 binding sites and mRNA appear to be codistributed with very dense levels in the intermediate lobe and individually labeled cells in the anterior lobe. Brain regions demonstrating a lack of correspondence between the distribution of the D2 binding site and D2 receptor mRNA include the olfactory bulb, neocortex, paleocortex, hippocampus, and zona incerta. Several hypotheses are discussed to explain the lack of correspondence in certain brain regions; these include the localization of receptor binding sites on both fibers and cell bodies and receptor transport. These studies provide a better understanding of the anatomical distribution of the D2 receptor and serve as a framework for future regulatory and anatomical mapping studies. By focusing on specific brain regions, such as the nigrostriatal system, hippocampus, and olfactory bulb, they provide insights into D2 receptor synthesis, transport, and insertion into cell membranes.
    [Abstract] [Full Text] [Related] [New Search]