These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Comparative in vitro study among the effects of different laser and LED irradiation protocols and conventional chlorhexidine treatment for deactivation of bacterial lipopolysaccharide adherent to titanium surface. Author: Giannelli M, Pini A, Formigli L, Bani D. Journal: Photomed Laser Surg; 2011 Aug; 29(8):573-80. PubMed ID: 21438842. Abstract: OBJECTIVE AND BACKGROUND: The present in vitro study was designed to evaluate and compare the efficacy of: 1) different dental laser devices used in photoablative (PA) mode, namely commercial CO(2), Er:YAG, and Nd:YAG lasers and a prototype diode laser (wavelength = 810 nm); 2) prototype low-energy laser diode or light-emitting diode (LED) (wavelength = 630 nm), used in photodynamic (PD) mode together with the photoactivated agent methylene blue; and 3) chlorhexidine, used as reference drug, to reduce the activation of macrophages by lipopolysaccharide (LPS), a major pro-inflammatory gram-negative bacterial endotoxin, adherent to titanium surface. METHODS: RAW 264-7 macrophages were cultured on titanium discs, cut from commercial dental implants and precoated with Porphyromonas gingivalis LPS. Before cell seeding, the discs were treated or not with the noted lasers and LED in PA and PD modes, or with chlorhexidine. The release of nitric oxide (NO), assumed to be a marker of macrophage inflammatory activation, in the conditioned medium was related to cell viability, evaluated by the MTS assay and ultrastructural analysis. RESULTS: PA laser irradiation of the LPS-coated discs with Er:YAG, Nd:YAG, CO(2,) and diode (810 nm) significantly reduced NO production, with a maximal inhibition achieved by Nd:YAG and diode (810 nm). Similar effects were also obtained by PD treatment with diode laser and LED (630 nm) and methylene blue. Notably, both treatments were superior to chlorhexidine in terms of efficiency/toxicity ratio. CONCLUSIONS: These findings suggest that laser and LED irradiation are capable of effectively reducing the inflammatory response to LPS adherent to titanium surface, a notion that may have clinical relevance.[Abstract] [Full Text] [Related] [New Search]