These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Thermal and acid denaturation of bovine lens α-crystallin.
    Author: Rasmussen T, van de Weert M, Jiskoot W, Kasimova MR.
    Journal: Proteins; 2011 Jun; 79(6):1747-58. PubMed ID: 21445944.
    Abstract:
    The chaperone-like protein α-crystallin is a ∼35 subunit hetero-oligomer consisting of αA and αB subunits in a 3:1 molar ratio and has the function of maintaining eye lens transparency. We studied the thermal denaturation of α-crystallin by differential scanning calorimetry (DSC), circular dichroism (CD), and dynamic light scattering (DLS) as a function of pH. Our results show that between pH 7 and 10 the protein undergoes a reversible thermal transition. However, the thermodynamic parameters obtained by DSC are inconsistent with the complete denaturation of an oligomeric protein of the size of α-crystallin. Accordingly, the CD data suggest the presence of extensive residual secondary structure above the transition temperature. Within the pH range from 4 to 7 the increased aggregation propensity around the isoelectric point (pI ∼ 6) precludes observation of a thermal transition. As pH decreases below 4 the protein undergoes a substantial unfolding. The secondary structure content of the acid-denatured state shows little sensitivity to heating. We propose that the thermal transition above pH 7 and the acid-induced transition at ambient temperature result in predominant denaturation of the αB subunit. Although the extent of denaturation of the αA subunit cannot be estimated from the current data, the existence of a native-like conformation is suggested by the preserved association of the subunits and the chaperone-like activity. A key difference between the thermal and the acid denaturation is that the latter is accompanied by dissociation of αB subunits from the remaining αA-oligomer, as supported by DLS studies.
    [Abstract] [Full Text] [Related] [New Search]