These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The area postrema in hindbrain is a central player for regulation of drinking behavior in Japanese eels.
    Author: Nobata S, Takei Y.
    Journal: Am J Physiol Regul Integr Comp Physiol; 2011 Jun; 300(6):R1569-77. PubMed ID: 21451142.
    Abstract:
    It is recognized that fish will drink the surrounding water by reflex swallowing without a thirst sensation. We evaluated the role of the area postrema (AP), a sensory circumventricular organ (CVO) in the medulla oblongata, in the regulation of drinking behavior of seawater (SW) eels. The antidipsogenic effects of ghrelin and atrial natriuretic peptide and hypervolemia and hyperosmolemia (1 M sucrose or 10% NaCl) as well as the dipsogenic effects of angiotensin II and hypovolemia (hemorrhage) were profoundly diminished after AP lesion (APx) in eels compared with sham controls. However, the antidipsogenic effect of urotensin II was not influenced by APx, possibly due to the direct baroreflex inhibition on the swallowing center in eels. When ingested water was drained via an esophageal fistula, water intake increased 30-fold in sham controls but only fivefold in APx eels, suggesting a role for the AP in continuous regulation of drinking by SW eels. After transfer from freshwater to SW, APx eels responded normally with an immediate burst of drinking, but after 4 wk these animals showed a much greater increase in plasma osmolality than controls, suggesting that the AP is involved in acclimation to SW by fine tuning of the drinking rate. Taken together, the AP in the hindbrain of eels plays an integral role in SW acclimation, acting as a conduit of information from plasma for the regulation of drinking, probably without a thirst sensation. This differs from mammals in which sensory CVOs in the forebrain play pivotal roles in thirst regulation.
    [Abstract] [Full Text] [Related] [New Search]