These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hydrophobic anions potently and uncompetitively antagonize GABA(A) receptor function in the absence of a conventional binding site.
    Author: Chisari M, Wu K, Zorumski CF, Mennerick S.
    Journal: Br J Pharmacol; 2011 Sep; 164(2b):667-80. PubMed ID: 21457224.
    Abstract:
    BACKGROUND AND PURPOSE: A 'lock-and-key' binding site typically accounts for the effect of receptor antagonists. However, sulphated neurosteroids are potent non-competitive antagonists of GABA(A) receptors without a clear structure-activity relationship. To gain new insights, we tested two structurally unrelated hydrophobic anions with superficially similar properties to sulphated neurosteroids. EXPERIMENTAL APPROACH: We used voltage-clamp techniques in Xenopus oocytes and hippocampal neurons to characterize dipicrylamine (DPA) and tetraphenylborate (TPB), compounds previously used to probe membrane structure and voltage-gated ion channel function. KEY RESULTS: Both DPA and TPB potently antagonized GABA(A) receptors. DPA exhibited an IC₅₀ near 60 nM at half-maximal GABA concentration and antagonism with features indistinguishable from pregnenolone sulphate antagonism, including sensitivity to a point mutation in transmembrane domain 2 of the α1 subunit. Bovine serum albumin, which scavenges free membrane-associated DPA, accelerated both capacitance offset and antagonism washout. Membrane interactions and antagonism were explored using the voltage-dependent movement of DPA between membrane leaflets. Washout of DPA antagonism was strongly voltage-dependent, paralleling DPA membrane loss, although steady-state antagonism lacked voltage dependence. At antagonist concentrations, DPA failed to affect inhibitory post-synaptic current (IPSC) amplitude or decay, but DPA accelerated pharmacologically prolonged IPSCs. CONCLUSIONS AND IMPLICATIONS: Neurosteroid-like GABA(A) receptor antagonism appears to lacks a conventional binding site. These features highlight key roles of membrane interactions in antagonism. Because its membrane mobility can be controlled, DPA may be a useful probe of GABA(A) receptors, but its effects on excitability via GABA(A) receptors raise caveats for its use in monitoring neuronal activity.
    [Abstract] [Full Text] [Related] [New Search]