These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of oxygen plasma immersion ion implantation treatment on corrosion resistance and cell adhesion of titanium surface. Author: Yang CH, Wang YT, Tsai WF, Ai CF, Lin MC, Huang HH. Journal: Clin Oral Implants Res; 2011 Dec; 22(12):1426-32. PubMed ID: 21457349. Abstract: OBJECTIVE: The study was to investigate the corrosion resistance and cell adhesion of titanium (Ti) surface for dental implant application by oxygen plasma immersion ion implantation (O-PIII) treatments. MATERIALS AND METHODS: Commercially pure Ti discs (grade 2) were used as the substrate. O-PIII surface treatments, with different oxygen doses (1 × 10(16) and 4 × 10(16) ions/cm(2)), were performed in a high-vacuum chamber with a radio frequency plasma source. Atomic force microscope, X-ray photoelectron spectrometer and nanoindenter were used to analyze surface topography, chemical composition (three samples per group) and mechanical property (twenty-five samples per group) of Ti specimens, respectively. Corrosion resistance of Ti specimens (five samples per group) was evaluated by potentiodynamic polarization curve measurement in simulated blood plasma solution. The adhesion and spreading of human bone marrow mesenchymal stem cells (hMSCs) on Ti surfaces were studied. RESULTS: The results showed that O-PIII treatment had no significant influence on the surface topography of Ti specimens. The thickness of oxide layer (mainly as TiO(2)) on the O-PIII-treated Ti specimens increased with an increase in oxygen dose implanted. The O-PIII-treated Ti specimens possessed higher surface hardness and Young's modulus than the untreated Ti specimen. Potentiodynamic polarization tests revealed that the O-PIII-treated Ti surfaces had lower corrosion rate (I(corr)) and passive current (I(pass)) than the untreated Ti surface. The adhesion and spreading of hMSCs on Ti surfaces were improved by O-PIII treatment. CONCLUSIONS: O-PIII treatment could enhance the corrosion resistance and cell adhesion of Ti surface for dental implant application due to the increase in surface thickness of Ti-oxides (mainly as TiO(2)) on Ti.[Abstract] [Full Text] [Related] [New Search]