These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Regulation of scallop myosin by mutant regulatory light chains. Author: Goodwin EB, Leinwand LA, Szent-Györgyi AG. Journal: J Mol Biol; 1990 Nov 05; 216(1):85-93. PubMed ID: 2146399. Abstract: Scallop adductor myosin is regulated by its subunits; the regulatory light chain (R-LC) and essential light chain (E-LC). Myosin light chains suppress muscle activity in the absence of calcium and are responsible for relaxation. The binding of Ca2+ to the myosin triggers contraction by releasing the inhibition imposed on myosin by the light chains. To map the functional domains of the R-LC, we have carried out mutagenesis followed by bacterial expression. Both wild-type and mutant proteins were hybridized to scallop myosin heavy chain/E-LC to map the regions of the light chain that are responsible for the binding to the myosin heavy chain/E-LC, for restoring the specific calcium-binding site, and controlling the myosin ATPase activity. The R-LC is expressed in Escherichia coli using the pKK223-3 (Pharmacia) expression vector and has been purified to greater than 90% purity. E. coli-expressed wild-type R-LC differs from the native R-LC by having the initiating methionine residue and an unblocked NH2 terminus. The wild-type R-LC restores Ca2+ binding and Ca2+ sensitivity when hybridized to scallop myosin. A point mutation of the sixth Ca2(+)-liganding position of domain I (Asp39----Ala39) results in a R-LC that binds more weakly to the heavy chain/E-LC and restores the specific Ca2(+)-binding site but not regulation of the actin-activated Mg2+ ATPase. A second mutation was produced by substituting the last 11 residues of the COOH terminus with 15 different residues. This mutant restores the specific Ca2(+)-binding site, but does not restore Ca2+ regulation to the actin-activated ATPase activity. Several other point mutations do not alter light chain function. The experiments directly establish that the divalent cation-binding site of domain I is functionally distinct from the specific Ca2(+)-binding site. The results indicate that an intact domain I and the COOH terminus are required to suppress the myosin ATPase activity. The fact that the domain I mutation and the COOH-terminal mutation disrupt regulation but do not affect Ca2(+)-binding indicates that these two aspects of regulation are separable and, therefore, the R-LC has distinct functional regions.[Abstract] [Full Text] [Related] [New Search]