These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Concentration characteristics of VOCs and acids/bases in the gas phase and water-soluble ions in the particle phase at an electrical industry park during construction and mass production.
    Author: Tsai JH, Huang YS, Shieh ZX, Chiang HL.
    Journal: J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(5):540-51. PubMed ID: 21469015.
    Abstract:
    The electronics industry is a major business in the Central Taiwan Science Park (CTSP). Particulate samples and 11 water-soluble ionic species in the particulate phase were measured by ionic chromatography (IC). Additionally, acid and base gases were sampled by denuder absorption and analyzed by IC. Volatile organic compounds (VOCs) were collected in stainless-steel canisters four times daily and analyzed via gas chromatography/mass spectrometry. Ozone formation potential (OFP) was measured using maximum increment reactivity. In addition, airborne pollutants during (1) construction and (2) mass production were measured. Particulate matter concentration did not increase significantly near the optoelectronic plant during construction, but it was higher than during mass production. SO(2), HNO(2) and NH(3) were the dominant gases in the denuder absorption system. Nitrate, sulfate, and ammonium ions predominated both in PM(2.5) and PM(10-2.5); but calcium ion concentration was significantly higher in PM(10-2.5) samples during construction. Toluene, propane, isopentane, and n-butane may have come from vehicle exhaust. Construction equipment emitted high concentrations of ethylbenzene, m-xylene, p-xylene, o-xylene, 1,2,4-trimethylbenzene, and toluene. During mass production, methyl ethyl ketone), acetone and ethyl acetate were significantly higher than during construction, although there was continuous rain. The aromatic group constituted >50% of the VOC concentration totals and contributed >70% of OFP.
    [Abstract] [Full Text] [Related] [New Search]