These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dynamic viscoelastic properties of cellulose carbamate dissolved in NaOH aqueous solution. Author: Guo Y, Zhou J, Zhang L. Journal: Biomacromolecules; 2011 May 09; 12(5):1927-34. PubMed ID: 21476547. Abstract: Dynamic viscoelastic properties of cellulose carbamate (CC) dissolved in NaOH aqueous solution were systematically studied for the first time. CC was microwave-assisted synthesized from the mixture of cellulose and urea and then dissolved in 7 wt % NaOH aqueous solution precooled to -7 °C. The obtained CC solution is transparent and has good liquidity. To clarify the rheological behavior of the solution, the CC solutions were investigated by dynamic viscoelastic measurements. The shear storage modulus (G') and loss modulus (G'') as a function of the angular frequency (ω), concentration (c), nitrogen content (N %), viscosity-average molecular weight (M(η)), temperature (T), and time (t) were analyzed and discussed in detail. The sol-gel transition temperature of CC (M(η) = 7.78 × 10(4)) solution decreased from 36.5 to 31.3 °C with an increase of the concentration from 3.0 to 4.3 wt % and decreased from 35.7 to 27.5 °C with an increase of the nitrogen content from 1.718 to 5.878%. The gelation temperature of a 3.8 wt % CC solution dropped from 38.2 to 34.4 °C with the M(η) of CC increased from 6.35 × 10(4) to 9.56 × 10(4). The gelation time of the CC solution was relatively short at 30 °C, but the solution was stable for a long time at about 15 °C. Moreover, the gels already formed at elevated temperature were irreversible; that is, after cooling to a lower temperature including the dissolution temperature (-7 °C), they could not be dissolved to become liquid.[Abstract] [Full Text] [Related] [New Search]