These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Micelles of poly(styrene-b-2-vinylpyridine-b-ethylene oxide) with blended polystyrene core and their application to the synthesis of hollow silica nanospheres. Author: Liu D, Sasidharan M, Nakashima K. Journal: J Colloid Interface Sci; 2011 Jun 15; 358(2):354-9. PubMed ID: 21477811. Abstract: Core-shell-corona (CSC) micelles of asymmetric triblock copolymer, poly(styrene-b-2-vinylpyridine-b-ethylene oxide) (PS-PVP-PEO), containing polystyrene homopolymer (homo-PS) in the core were successfully prepared in aqueous media. The influence of homo-PS contents over the formation of the micelles was investigated thoroughly by various techniques such as dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and fluorescence spectroscopy. It was found that the size of the PS core of the micelle was increased by the addition of homo-PS as observed by DLS and TEM techniques. The SEM and TEM measurements confirm the spherical morphology of the micelles and enlargement of PS core over the addition of homo-PS. The increase in the PS core volume of the PS-PVP-PEO micelles is attributed to the insertion of homo-PS in the PS core. The micelles have also been demonstrated as facile soft templates for synthesis of hollow silica nanospheres. The average diameter of the spherical hollow particles could be tuned between 30.6 and 38.8 nm with cavity sizes ranging from 20.7 to 28.5 nm using tetramethoxysilane as silica precursors under mild acidic conditions. The facile synthesis of hollow silica using the CSC micelles with different homo-PS contents indicates that the hollow void size can be controlled within a range of several nanometers.[Abstract] [Full Text] [Related] [New Search]