These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Renner-Teller and Fermi resonance interactions for the v3=1 and v7=2 vibronic levels in the A2Πu and X2Πg electronic states of HC4H+.
    Author: Raghunandan R, Mazzotti FJ, Esmail AM, Maier JP.
    Journal: J Phys Chem A; 2011 Sep 01; 115(34):9365-9. PubMed ID: 21491894.
    Abstract:
    The excitation of the v(3) = 1 (σ(g)(+) C-C stretch) and the v(7) = 2 (π(g)(2) C≡C-C bend) modes in the A(2)Π(u) electronic state of diacetylene cations results in Renner-Teller (R-T) and Fermi interactions. The 3(0)(1) and 7(0)(2) vibronic bands in the A(2)Π(u)-X(2)Π(g) transition of HC(4)H(+) have been measured with rotational resolution using cavity ringdown spectroscopy in a supersonic slit jet discharge. The analysis yields T(00) = 20520.828(4) cm(-1), B' = 0.14047(2) cm(-1), and A' = -17.95(1) cm(-1) for the v(3) = 1 and T(00) = 20573.659(4) cm(-1), B' = 0.14018(3) cm(-1), and A' = -11.55(1) cm(-1) for the v(7) = 2 level in the A(2)Π(u) electronic state. A vibronic analysis has been carried out taking into consideration the R-T, spin-orbit, and Fermi resonance interactions between the ν(3) and ν(7) modes. The levels are fitted to the eigenvalues of an appropriate Hamiltonian matrix. This yields the vibrational frequencies ω(3)′ = 811.8 cm(-1) and ω(7)′ = 403.2 cm(-1), Renner parameter ε(7)′ = 0.065, Fermi coefficients W(1)′ = 10.3 cm(-1) and W(2)′ = 5.1 cm(-1), and spin-orbit interaction constant A(SO)′ = -31.1 cm(-1). A corresponding R-T analysis has been carried out for the X(2)Π(g) ground state of HC(4)H(+) using data available in the literature [Callomon, J. H. Can. J. Phys. 1956, 34, 1046]. This gives ω(3)" = 956.2 cm(-1), ω(7)" = 435.4 cm(-1), ε(7)" = 0.028, W(1)" = 7.2 cm(-1), W(2)" = 10.9 cm(-1), and A(SO)" = -33.3 cm(-1).
    [Abstract] [Full Text] [Related] [New Search]