These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In vivo nitric oxide suppression of lipolysis in subcutaneous abdominal adipose tissue is greater in obese than lean women.
    Author: Hickner RC, Kemeny G, Clark PD, Galvin VB, McIver KL, Evans CA, Carper MJ, Garry JP.
    Journal: Obesity (Silver Spring); 2012 Jun; 20(6):1174-8. PubMed ID: 21494230.
    Abstract:
    Mounting evidence suggests there is a reduced mobilization of stored fat in obese compared to lean women. It has been suggested that this decreased lipid mobilization may lead to, or perpetuate, the obese state; however, there may be a beneficial effect of reduced lipolysis, either by allowing for a sink of excess fatty acids, or by limiting a potentially harmful rise in interstitial and circulating fatty acid concentration. Nitric oxide (NO) may be responsible for a portion of the reduced in vivo rates of lipolysis in obese women because NO reduces adipose tissue lipolysis and adipose tissue nitric oxide synthase (NOS) mRNA is higher in obese than lean individuals. The purpose of this study was to determine if the inhibition of NOS by L-N(g)-monomethyl-L-arginine (L-NMMA) in the absence and presence of lipolytic stimulation would result in a larger increase in lipolytic rate in obese (OB) than lean (LN) women. Microdialysis probes were inserted into the subcutaneous abdominal adipose tissue of seven obese and six lean women to monitor lipolysis. Dialysate glycerol concentration increased in response to L-NMMA in OB (basal 125 ± 26 µmol/l; L-NMMA 225 ± 35 µmol/l) to a greater extent than in LN (basal 70 ± 18 µmol/l; L-NMMA 84 ± 20 µmol/l) women (P < 0.05). Dialysate glycerol increased to a similar extent in OB and LN in response to adrenergic stimulation by isoprenaline or norepinephrine in the presence of L-NMMA. The differential glycerol responses to L-NMMA between obese and lean could not be explained by differential blood flow responses. It can be concluded that NO suppresses basal lipolysis in obese women to a greater extent than in lean women.
    [Abstract] [Full Text] [Related] [New Search]