These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Contribution of 5-HT to locomotion - the paradox of Pet-1(-/-) mice. Author: Pearlstein E, Bras H, Deneris ES, Vinay L. Journal: Eur J Neurosci; 2011 May; 33(10):1812-22. PubMed ID: 21501257. Abstract: Serotonin (5-HT) plays a critical role in locomotor pattern generation by modulating the rhythm and the coordinations. Pet-1, a transcription factor selectively expressed in the raphe nuclei, controls the differentiation of 5-HT neurons. Surprisingly, inactivation of Pet-1 (Pet-1(-/-) mice) that causes a 70% reduction in the number of 5-HT-positive neurons in the raphe does not impair locomotion in adult mice. The goal of the present study was to investigate the operation of the locomotor central pattern generator (CPG) in neonatal Pet-1(-/-) mice. We first confirmed, by means of immunohistochemistry, that there is a marked reduction of 5-HT innervation in the lumbar spinal cord of Pet-1(-/-) mice. Fictive locomotion was induced in the in vitro neonatal mouse spinal cord preparation by bath application of N-methyl-d,l-Aspartate (NMA) alone or together with dopamine and 5-HT. A locomotor pattern characterized by left-right and flexor-extensor alternations was observed in both conditions. Increasing the concentration of 5-HT from 0.5 to 5 μm impaired the pattern in Pet-1(-/-) mice. We tested the role of endogenous 5-HT in the NMA-induced fictive locomotion. Application of 5-HT(2) or 5-HT(7) receptor antagonists affected the NMA-induced fictive locomotion in both heterozygous and homozygous mice although the effects were weaker in the latter strain. This may be, at least partly, explained by the reduced expression of 5-HT(2A) R as observed by means of immunohistochemistry. These results suggest that compensatory mechanisms take place in Pet-1(-/-) mice that make locomotion less dependent upon 5-HT.[Abstract] [Full Text] [Related] [New Search]