These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Impairment of the mitochondrial oxidative response to D-glucose in pancreatic islets from adult rats injected with streptozotocin during the neonatal period. Author: Giroix MH, Sener A, Bailbe D, Portha B, Malaisse WJ. Journal: Diabetologia; 1990 Nov; 33(11):654-60. PubMed ID: 2150194. Abstract: Pancreatic islets removed from adult rats injected with streptozotocin during the neonatal period display an impaired secretory response to D-glucose and, to a lesser extent, to L-leucine. Despite normal to elevated hexokinase and glucokinase activities in the islets of these glucose-intolerant animals and despite normal mitochondrial binding of the hexokinase isoenzymes, the metabolic response to a high concentration of D-glucose is severely affected, especially in terms of D-[6-14C]glucose oxidation. Thus, the ratio in D-[6-14C]glucose oxidation/D-[5-3H]glucose utilization is much less markedly increased in response to a rise in hexose concentration and, at a high concentration of D-glucose (16.7 mmol/l), less markedly decreased by the absence of Ca2+ and presence of cycloheximide in diabetic than control rats. This metabolic defect contrasts with (1) a close-to-normal or even increased capacity of the islets of diabetic rats to oxidize D-[6-14C]glucose, [2-14C]pyruvate, L-[U-14C]glutamine and L-[U-14C]leucine at low, non-insulinotropic, concentrations of these substrates; (2) a lesser impairment of the oxidation of L-[U-14C]leucine tested in high concentration (20 mmol/l), the effect of Ca2+ deprivation upon the latter variable being comparable in diabetic and control rats; (3) an unaltered transamination of either [2-14C]pyruvate or L-[U-14C]leucine; and (4) a modest perturbation of glycolysis. The most obvious alteration in glycolysis consists in a lesser increase of the glycolytic flux in response to a rise of D-glucose concentration in diabetic than control rats, this coinciding with an apparent decrease in affinity of glucokinase for the hexose.(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]