These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Revisited distribution of nonfermenting Gram-negative bacilli clinical isolates.
    Author: Jacquier H, Carbonnelle E, Corvec S, Illiaquer M, Le Monnier A, Bille E, Zahar JR, Beretti JL, Jauréguy F, Fihman V, Tankovic J, Cattoir V.
    Journal: Eur J Clin Microbiol Infect Dis; 2011 Dec; 30(12):1579-86. PubMed ID: 21509476.
    Abstract:
    Nonfermenting Gram-negative bacilli (NF-GNB) are ubiquitous environmental opportunistic bacteria frequently misidentified by conventional phenotypic methods. The aim of this study was to determine the distribution of NF-GNB species by 16 S rRNA gene sequencing (used as reference method) and to compare performances of biochemical tests and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). From nine French hospitals, 188 NF-GNB isolates (except P. aeruginosa and A. baumannii) were prospectively collected from 187 clinical samples between December 2008 and May 2009. By using the genotypic approach, 173 (92%) and 188 (100%) isolates were identified to the species and genus level, respectively. They covered 35 species and 20 genera, with a predominance of Stenotrophomonas maltophilia, Achromobacter xylosoxidans, and Pseudomonas putida group bacteria. Of the 173 species-level identified strains, concordant identification to the species-level was obtained for 75.1%, 83% and 88.9% of isolates with API 20 NE strip, the VITEK-2 (ID-GN card) system and MALDI-TOF-MS, respectively. By excluding S. maltophilia isolates accurately identified by the three methods, genus-level identification was much higher for MALDI-TOF-MS (92.9%), compared with API 20 NE and VITEK-2 (76.2% and 80.8%, respectively). In conclusion, MALDI-TOF-MS represents a rapid, inexpensive, and accurate tool for routine identification of NF-GNB in human clinical samples.
    [Abstract] [Full Text] [Related] [New Search]