These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Potential role of NADPH oxidase-mediated activation of Jak2/Stat3 and mitogen-activated protein kinases and expression of TGF-β1 in the pathophysiology of acute pancreatitis.
    Author: Ju KD, Lim JW, Kim KH, Kim H.
    Journal: Inflamm Res; 2011 Aug; 60(8):791-800. PubMed ID: 21509626.
    Abstract:
    OBJECTIVE: NADPH oxidase is potentially associated with acute pancreatitis by producing reactive oxygen species (ROS). We investigated whether NADPH oxidase mediates the activation of Janus kinase (Jak)2/signal transducers and activators of transcription (Stat)3 and mitogen-activated protein kinases (MAPKs) to induce the expression of transforming growth factor-β1 (TGF-β1) in cerulein-stimulated pancreatic acinar cells. TREATMENT: AR42J cells were treated with an NADPH oxidase inhibitor diphenyleneiodonium (DPI) or a Jak2 inhibitor AG490. Other cells were transfected with antisense or sense oligonucleotides (AS or S ODNs) for NADPH oxidase subunit p22(phox) or p47(phox). METHODS: TGF-β1 was determined by enzyme-linked immonosorbent assay. STAT3-DNA binding activity was measured by electrophoretic mobility shift assay. Levels of MAPKs as well as total and phospho-specific forms of Jak1/Stat3 were assessed by Western blot analysis. RESULTS: Cerulein induced increases in TGF-β1, Stat3-DNA binding activity and the activation of MAPKs in AR42J cells. AG490 suppressed these cerulein-induced changes, similar to inhibition by DPI. Cerulein-induced activation of Jak2/Stat3 and increases in MAPKs and TGF-β1 levels were inhibited in the cells transfected with AS ODN for p22(phox) and p47(phox) compared to S ODN controls. CONCLUSION: Inhibition of NADPH oxidase may be beneficial for prevention and treatment of pancreatitis by suppressing Jak2/Stat3 and MAPKs and expression of TGF-β1 in pancreatic acinar cells.
    [Abstract] [Full Text] [Related] [New Search]