These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Electrospun nanofibers of TiO2/CdS heteroarchitectures with enhanced photocatalytic activity by visible light. Author: Su C, Shao C, Liu Y. Journal: J Colloid Interface Sci; 2011 Jul 01; 359(1):220-7. PubMed ID: 21511267. Abstract: Herein, we have demonstrated that the electrospun nanofibers of TiO(2)/CdS heteroarchitectures could be fabricated through combining electrospinning technique with hydrothermal process. The configuration, crystal structure, and element composition of the as-prepared TiO(2)/CdS heteroarchitectures were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), resonant Raman spectrometer, X-ray photoelectron spectroscopy (XPS). The results indicated that the high-density hexagonal wurtzite CdS crystalline particles of ca. 6-40 nm in diameter were uniformly and closely grown on anatase TiO(2) nanofibers. Especially, the light-absorption properties as well as photocatalytic characteristics of pure TiO(2) nanofibers and TiO(2)/CdS heteroarchitectures with different amount loading of CdS were also investigated. The absorption of TiO(2)/CdS heteroarchitectures was extended to the visible due to effective immobilization of sensitizing agent CdS on TiO(2). In contrast with the pure TiO(2) nanofibers, the TiO(2)/CdS heteroarchitectures showed excellent photocatalytic activity by using rhodamine B dye as a model organic substrate under visible-light irradiation. It was worth noting that the cooperative photocatalytic mechanism of the TiO(2)/CdS heteroarchitectures was also discussed.[Abstract] [Full Text] [Related] [New Search]