These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Substrate interactions during the biodegradation of BTEX and THF mixtures by Pseudomonas oleovorans DT4. Author: Zhou YY, Chen DZ, Zhu RY, Chen JM. Journal: Bioresour Technol; 2011 Jun; 102(12):6644-9. PubMed ID: 21511464. Abstract: The efficient tetrahydrofuran (THF)-degrading bacterium, Pseudomonas oleovorans DT4 was used to investigate the substrate interactions during the aerobic biotransformation of THF and BTEX mixtures. Benzene and toluene could be utilized as growth substrates by DT4, whereas cometabolism of m-xylene, p-xylene and ethylbenzene occurred with THF. In binary mixtures, THF degradation was delayed by xylene, ethylbenzene, toluene and benzene in descending order of inhibitory effects. Conversely, benzene (or toluene) degradation was greatly enhanced by THF leading to a higher degradation rate of 39.68 mg/(h g dry weight) and a shorter complete degradation time about 21 h, possibly because THF acted as an "energy generator". Additionally, the induction experiments suggested that BTEX and THF degradation was initiated by independent and inducible enzymes. The transient intermediate hydroquinone was detected in benzene biodegradation with THF while catechol in the process without THF, suggesting that P. oleovorans DT4 possessed two distinguished benzene pathways.[Abstract] [Full Text] [Related] [New Search]