These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A physiologically based pharmacokinetic model characterizing mechanism-based inhibition of CYP1A2 for predicting theophylline/antofloxacin interaction in both rats and humans. Author: Pan X, Wang P, Hu N, Liu L, Liu X, Xie L, Wang G. Journal: Drug Metab Pharmacokinet; 2011; 26(4):387-98. PubMed ID: 21512260. Abstract: Clinical studies have revealed that some fluoroquinolones may cause severe adverse effects when co-administered with substrates of CYP1A2. Our previous study showed antofloxacin (ATFX) was responsible for mechanism-based inhibition (MBI) of the metabolism of phenacetin in rats. In the clinical setting, ATFX is likely to be administrated with theophylline (TP), which is mainly metabolized by CYP1A2. The aim of the present study was to investigate the possible mechanism of TP/ATFX interaction. In vitro studies showed that the inhibitory effect of ATFX on the formation of three TP metabolites depended on NADPH, the pre-inhibition time, and ATFX concentration, i.e., factors which characterize MBI. In vivo studies demonstrated that single-dose ATFX (20 mg/kg) did not affect the pharmacokinetic behavior of TP, but multidose ATFX (20 mg/kg b.i.d. for 7.5 days) significantly increased the AUC of TP, decreased the amount of three TP metabolites in urine, and suppressed hepatic microsomal activity. A physiologically based pharmacokinetic (PBPK) model characterizing MBI of the three TP metabolites was developed for predicting TP/ATFX interaction in rats; this model was further extrapolated to humans. The predicted results were in good agreement with observed data. All the results indicated that ATFX was responsible for MBI of the metabolism of TP, and the PBPK model characterizing MBI may give good prediction of TP/ATFX interaction.[Abstract] [Full Text] [Related] [New Search]