These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Geometric and magnetic properties of Pt clusters supported on graphene: relativistic density-functional calculations. Author: Błoński P, Hafner J. Journal: J Chem Phys; 2011 Apr 21; 134(15):154705. PubMed ID: 21513406. Abstract: The geometric and magnetic structures of small Pt(n) clusters (n = 1 - 5) supported on a graphene layer have been investigated using ab initio density functional calculations including spin-orbit coupling. Pt-Pt interactions were found to be much stronger than the Pt-C interactions promoting the binding to the support. As a consequence, the equilibrium structure of the gas-phase clusters is preserved if they are deposited on graphene. However, the clusters bind to graphene only via at most two Pt-C bonds: A Pt(2) dumbbell prefers an upright position, the larger clusters are bound to graphene only via one edge of the planar cluster (Pt(3) and Pt(5)) or via two terminal Pt atoms of a bent Pt(4) rhombus. Evidently, the strong buckling of the graphene layer induced by the Pt-C bonds prevents the formation of a larger number of cluster-support bonds. As the local spin and orbital magnetic moments are quenched on the Pt atoms forming Pt-C bonds, the magnetic structure of the supported clusters is much more inhomogeneous as in the gas-phase. This leads to noncollinear magnetic structures and a strongly reduced magnetic anisotropy energy.[Abstract] [Full Text] [Related] [New Search]