These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: B7-H3 silencing increases paclitaxel sensitivity by abrogating Jak2/Stat3 phosphorylation. Author: Liu H, Tekle C, Chen YW, Kristian A, Zhao Y, Zhou M, Liu Z, Ding Y, Wang B, Mælandsmo GM, Nesland JM, Fodstad O, Tan M. Journal: Mol Cancer Ther; 2011 Jun; 10(6):960-71. PubMed ID: 21518725. Abstract: In many types of cancer, the expression of the immunoregulatory protein B7-H3 has been associated with poor prognosis. Previously, we observed a link between B7-H3 and tumor cell migration and invasion, and in present study, we have investigated the role of B7-H3 in chemoresistance in breast cancer. We observed that silencing of B7-H3, via stable short hairpin RNA or transient short interfering RNA transfection, increased the sensitivity of multiple human breast cancer cell lines to paclitaxel as a result of enhanced drug-induced apoptosis. Overexpression of B7-H3 made the cancer cells more resistant to the drug. Next, we investigated the mechanisms behind B7-H3-mediated paclitaxel resistance and found that the level of Stat3 Tyr705 phosphorylation was decreased in B7-H3 knockdown cells along with the expression of its direct downstream targets Mcl-1 and survivin. The phosphorylation of Janus kinase 2 (Jak2), an upstream molecule of Stat3, was also significantly decreased. In contrast, reexpression of B7-H3 in B7-H3 knockdown and low B7-H3 expressing cells increased the phosphorylation of Jak2 and Stat3. In vivo animal experiments showed that B7-H3 knockdown tumors displayed a slower growth rate than the control xenografts. Importantly, paclitaxel treatment showed a strong antitumor activity in the mice with B7-H3 knockdown tumors, but only a marginal effect in the control group. Taken together, our data show that in breast cancer cells, B7-H3 induces paclitaxel resistance, at least partially by interfering with Jak2/Stat3 pathway. These results provide novel insight into the function of B7-H3 and encourage the design and testing of approaches targeting this protein and its partners.[Abstract] [Full Text] [Related] [New Search]