These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Photochemical modeling of the Ozark isoprene volcano: MEGAN, BEIS, and their impacts on air quality predictions.
    Author: Carlton AG, Baker KR.
    Journal: Environ Sci Technol; 2011 May 15; 45(10):4438-45. PubMed ID: 21520901.
    Abstract:
    Biogenic volatile organic compounds (BVOCs) contribute substantially to atmospheric carbon, exerting influence on air quality and climate. Two widely used models, the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the Biogenic Emission Inventory System (BEIS) are employed to generate emissions for application in the CMAQ air quality model. Predictions of isoprene, monoterpenes, ozone, formaldehyde, and secondary organic carbon (SOC) are compared to surface and aloft measurements made during an intensive study in the Ozarks, a large isoprene emitting region. MEGAN and BEIS predict spatially similar emissions but magnitudes differ. The total VOC reactivity of the emissions, as developed for the CB05 gas-phase chemical mechanism, is a factor of 2 different between the models. Isoprene estimates by CMAQ-MEGAN are higher and more variable than surface and aloft measurements, whereas CMAQ-BEIS predictions are lower. CMAQ ozone predictions are similar and compare well with measurements using either MEGAN or BEIS. However, CMAQ-MEGAN overpredicts formaldehyde. CMAQ-BEIS SOC predictions are lower than observational estimates for every sample. CMAQ-MEGAN underpredicts SOC ∼ 80% of the time, despite overprediction of precursor VOCs. CMAQ-MEGAN isoprene predictions improve when prognostically predicted solar radiation is replaced with the GEWEX satellite product. CMAQ-BEIS does not exhibit similar photosensitivity.
    [Abstract] [Full Text] [Related] [New Search]