These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A novel synchronous fluorescence spectroscopic approach for the rapid determination of three polycyclic aromatic hydrocarbons in tea with simple microwave-assisted pretreatment of sample. Author: Li XY, Li N, Luo HD, Lin LR, Zou ZX, Jia YZ, Li YQ. Journal: J Agric Food Chem; 2011 Jun 08; 59(11):5899-905. PubMed ID: 21520950. Abstract: Many polycyclic aromatic hydrocarbons (PAHs) are carcinogenic, and some have been reported to be present in tea. People can be exposed to PAHs through tea consumption. Therefore, there is real importance for the determination of PAHs in tea. Because of the complex matrix of tea, it is hard to detect PAHs in tea without cleanup and chromatographic separation procedures. In this research, for the first time, a novel synchronous fluorescence spectroscopic approach coupling nonlinear variable-angle synchronous and matrix-isopotential synchronous scanning modes has been developed for the rapid determination of benzo(a)pyrene (BaP), benzo(k)fluoranthene (BkF), and anthracene (AN) in tea with simple microwave-assisted pretreatment of samples. This novel technique is able to resolve the spectra of the three PAHs well, even with interference from other EPA PAHs. The detection limits for BaP, BkF, and AN in tea were 0.18-0.28, 0.55-0.89, and 0.64-3.58 μg/kg, respectively, depending on various teas, with satisfactory recoveries ranging from 77.1 to 116%. The relative standard deviations achieved for BaP, BkF, and AN were 1.5, 6.6, and 8.5% for green tea; 2.9, 7.4, and 2.1% for oolong tea; and 5.6, 5.4, and 5.8% for black tea, respectively. Our results showed good correlation with those of gas chromatography-mass spectrometry. The approach developed is simple, reliable, and cost-efficient, providing an attractive alternative for the rapid selective screening of PAHs in tea.[Abstract] [Full Text] [Related] [New Search]