These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: OCSBF-1, a maize ocs enhancer binding factor: isolation and expression during development.
    Author: Singh K, Dennis ES, Ellis JG, Llewellyn DJ, Tokuhisa JG, Wahleithner JA, Peacock WJ.
    Journal: Plant Cell; 1990 Sep; 2(9):891-903. PubMed ID: 2152133.
    Abstract:
    The ocs-elements comprise a family of related 20-base pair DNA sequences with dyad symmetry that are functional components of the promoters of several genes introduced into the plant nucleus by Agrobacterium transformation or infection by DNA viruses. We describe the isolation and characterization of a maize cDNA that encodes a protein, OCSBF-1, that binds specifically to ocs-element sequences. The 21-kilodalton OCSBF-1 protein was encoded by a single copy, intron-less gene. The gene was differentially expressed in maize plants. Developing leaves had a gradient of OCSBF-1 mRNA with the basal portion of the leaves, which contain dividing and differentiating cells, having 40-fold to 50-fold higher levels of OCSBF-1 transcripts than the apical portion of the leaves, where the cells are fully differentiated. Roots and shoots of young plants had levels of OCSBF-1 mRNA similar to the basal portions of developing leaves. OCSBF-1 contained a small basic amino acid region and a potential leucine zipper motif homologous to the DNA-binding domains of the basic region-leucine zipper family of transcription factors such as Jun and GCN4. A truncated protein with the amino-terminal 76 amino acids of OCSBF-1, encompassing the basic domain and leucine zipper motif, still bound to ocs-element sequences in vitro. OCSBF-1 was able to bind to a site within each half of the ocs-element as well as to animal AP-1 and CREB sites.
    [Abstract] [Full Text] [Related] [New Search]