These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sortilin associates with transforming growth factor-beta family proteins to enhance lysosome-mediated degradation. Author: Kwon S, Christian JL. Journal: J Biol Chem; 2011 Jun 17; 286(24):21876-85. PubMed ID: 21521695. Abstract: Transforming growth factor (TGF)-β family proteins are synthesized as precursors that are cleaved to generate an active ligand. Previous studies suggest that TGF-β activity can be controlled by lysosomal degradation of both precursor proteins and ligands, but how these soluble proteins are trafficked to the lysosome is incompletely understood. The current studies show that sortilin selectively co-immunoprecipitates with the cleaved prodomain and/or precursor form of TGF-β family members. Furthermore, sortilin co-localizes with, and enhances accumulation of a nodal family member in the Golgi. Co-expression of sortilin with TGF-β family members leads to decreased accumulation of precursor proteins and cleavage products and this is attenuated by lysosomal, but not proteosomal inhibitors. In Xenopus embryos, overexpression of sortilin leads to a decrease in phospho-Smad2 levels and phenocopies loss of nodal signaling. Conversely, down-regulation of sortilin expression in HeLa cells leads to an up-regulation of endogenous bone morphogenic protein pathway activation, as indicated by an increase in phospho-Smad1/5/8 levels. Our results suggest that sortilin negatively regulates TGF-β signaling by diverting trafficking of precursor proteins to the lysosome during transit through the biosynthetic pathway.[Abstract] [Full Text] [Related] [New Search]