These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Determinants of exposure to mercury in hair from inhabitants of the largest mercury mine in the world.
    Author: Díez S, Esbrí JM, Tobias A, Higueras P, Martínez-Coronado A.
    Journal: Chemosphere; 2011 Jul; 84(5):571-7. PubMed ID: 21524785.
    Abstract:
    Mercury exposure of the local population was assessed in two areas of the Almadén mercury mining district, Spain, which has been the world's largest producer of this element. Two groups, who are exposed to different sources of mercury, from a point source in Almadén and a diffuse source hundreds of kilometres away in the same region, were studied. Total mercury (THg) in human hair ranged from 0.20 to 9.35 mg kg(-1) and the mean value was 2.64 mg kg(-1). About 87% of subjects had THg levels in excess of the EPA reference dose (RfD=1.0 mg kg(-1)), while a high percentage (68%) of them live in Almadén. There was a clear increase in hair Hg with reported fish consumption and the highest mean hair mercury level was 4 times the RfD in a group who had reported the highest consumption of fish. For the whole group, there was a significant effect of age, gender and fish consumption in relation to Hg concentration in the hair. Nevertheless, when both groups were tested separately by means of a multivariate regression model, there was significant exposure in those living near the mine area. Several factors such as age, gender and fish consumption remained statistically significant and were associated with THg. The main conclusion is that people living close to the hot spot are more impacted by mercury than people living further away. The intake of Hg through consumption of fish is an important parameter for Hg exposure; however, in the case of people living close to the hot spot, their levels are related to the highly Hg-impacted living environment.
    [Abstract] [Full Text] [Related] [New Search]