These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: How muscles define maximum running performance in lizards: an analysis using swing- and stance-phase muscles. Author: Higham TE, Korchari PG, McBrayer LD. Journal: J Exp Biol; 2011 May 15; 214(Pt 10):1685-91. PubMed ID: 21525314. Abstract: Maximum locomotor performance is crucial for capturing prey, escaping predators and many other behaviors. However, we know little about what defines maximum performance in vertebrates. Muscles drive the movement of the limbs during locomotion, and thus likely play a major role in defining locomotor capacity. For lizards, the iliofibularis, a swing-phase muscle, is often linked to ecology and/or performance. However, stance-phase muscles likely limit performance given that they propel the animal. Using a small semi-arboreal lizard (Sceloporus woodi), we compared how swing- and stance-phase muscles relate to maximum running speed and acceleration. We employed both a level and vertical trackway to elicit ecologically relevant locomotor performance. Six individuals were filmed at 250 frames s⁻¹ in lateral view. Following performance trials, upper and lower hindlimbs were sectioned and assessed using histochemistry. Fast glycolytic, fast oxidative and slow oxidative fibers were detected and counted in the gastrocnemius (GA; stance phase) and iliofibularis (IF; swing phase) muscles. In addition, the mean fiber diameter for each fiber type in each muscle was determined, as was the fiber cross-sectional area. We found that properties of the GA, but not the IF, were positively correlated with performance. Interestingly, certain attributes of the GA were correlated with maximum vertical locomotion whereas others were correlated with maximum level locomotion. We conclude that stance phase, not swing phase, limits maximum performance in this species of lizard. In addition, we highlight the need to include properties of stance-phase muscles and a spectrum of ecologically relevant behaviors when attempting to correlate locomotor physiology with ecology and/or performance.[Abstract] [Full Text] [Related] [New Search]