These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Wet-grinding assisted ultrasonic dispersion of pristine multi-walled carbon nanotubes (MWCNTs) in chitosan solution.
    Author: Tang C, Zhou T, Yang J, Zhang Q, Chen F, Fu Q, Yang L.
    Journal: Colloids Surf B Biointerfaces; 2011 Aug 01; 86(1):189-97. PubMed ID: 21530188.
    Abstract:
    Ultrasonication is often used to disperse nano-particles in aqueous solution. However, a good dispersion of nano-particles in aqueous solution is not always achieved, due to the fact that incoming ultrasonicwaves in liquid are usually reflected and damped at the gas/liquid interface. In this work, we report a so-called wet-grinding assisted ultrasonication (GU) method, in which wet-grinding of multi-walled carbon nanotubes (MWCNTs) in chitosan solution is carried out before ultrasonication. The dispersions of MWCNTs were characterized by visual comparison, UV/vis spectroscopy, and scanning electron microscopy (SEM). The results demonstrate that the dispersion quality of chitosan/MWCNT suspension prepared by wet-grinding assisted ultrasonication is much better than that by ultrasonication or wet-grinding alone. It was found that wet-grinding could improve the water wettability of MWCNTs and eliminate the barrier of air layer around MWCNTs to ultrasonicwaves. Meanwhile, the composite from the chitosan/MWCNTs suspension prepared by GU method has an obvious improvement in mechanical property compared to pure chitosan. This simple method for integrating MWCNTs and biocompatible chitosan into a homogeneous dispersion may have great potential application in biotechnology, such as preparing composite materials for medicine, bio-fiber, biosensor, antibacterial coating, and cell cultivation.
    [Abstract] [Full Text] [Related] [New Search]