These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The isolation and characterization of inositol polyphosphate 4-phosphatase.
    Author: Bansal VS, Caldwell KK, Majerus PW.
    Journal: J Biol Chem; 1990 Jan 25; 265(3):1806-11. PubMed ID: 2153145.
    Abstract:
    We previously identified an alternative pathway for the metabolism of inositol 1,3,4-trisphosphate (Ins(1,3,4)P3) in calf brain. The enzyme responsible for the degradation of Ins(1,3,4)P3 was designated as inositol polyphosphate 4-phosphatase (Bansal, V. S., Inhorn, R. C., and Majerus, P. W. (1987) J. Biol. Chem. 262, 9644-9647). We have now purified this enzyme 3390-fold from calf brain-soluble fraction. The isolated enzyme has an apparent molecular mass of 110 kDa as determined by gel filtration. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the enzyme migrates as a protein of 105 kDa, suggesting that it is monomeric. Among various 4-phosphate-containing inositol polyphosphates, the enzyme hydrolyzes only Ins(1,3,4)P3 and inositol 3,4-bisphosphate (Ins(3,4)P2), yielding inositol 1,3-bisphosphate and inositol 3-phosphate as products. The inositol polyphosphate 4-phosphatase has apparent Km values of 40 and 25 microM for Ins(1,3,4)P3 and Ins(3,4)P2, respectively. The maximum velocities for these two substrates are 15-20 mumol of product/min/mg protein. Ins(1,3,4)P3 is a competitive inhibitor of Ins(3,4)P2 hydrolysis with an apparent Ki of 27 microM implying that the same active site is involved in hydrolysis of both substrates. The final enzyme preparation retained a small inositol polyphosphate 3-phosphatase activity (less than 2% of rate of inositol polyphosphate 4-phosphatase activity) which most likely reflects a contaminant. The enzyme displays maximum activity between pH 6.5 and 7.5. It is not inhibited by Li+, Ca2+, or Mg2+ except at 10 mM divalent ions. Mn2+ inhibits enzyme at high concentrations IC50 = 1.5 mM.
    [Abstract] [Full Text] [Related] [New Search]