These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Application of solid phase-microextraction (SPME) and electronic nose techniques to differentiate volatiles of sesame oils prepared with diverse roasting conditions. Author: Park MH, Jeong MK, Yeo J, Son HJ, Lim CL, Hong EJ, Noh BS, Lee J. Journal: J Food Sci; 2011; 76(1):C80-8. PubMed ID: 21535659. Abstract: Headspace volatiles of sesame oil (SO) from sesame seeds roasted at 9 different conditions were analyzed by a combination of solid phase microextraction (SPME)-gas chromatography/mass spectrometry (GC/MS), electronic nose/metal oxide sensors (MOS), and electronic nose/MS. As roasting temperature increased from 213 to 247 °C, total headspace volatiles and pyrazines increased significantly (P < 0.05). Pyrazines were major volatiles in SO and furans, thiazoles, aldehydes, and alcohols were also detected. Roasting temperature was more discrimination factor than roasting time for the volatiles in SO through the principal component analysis (PCA) of SPME-GC/MS, electronic nose/MOS, and electronic nose/MS. Electronic nose/MS showed that ion fragment 52, 76, 53, and 51 amu played important roles in discriminating volatiles in SO from roasted sesame seeds, which are the major ion fragments from pyrazines, furans, and furfurals. SO roasted at 213, 230, and 247 °C were clearly differentiated from each other on the base of volatile distribution by SPME-GC/MS, electronic nose/MOS, and electronic nose/MS analyses. Practical Application: The results of this study are ready to apply for the discriminating samples using a combinational analysis of volatiles. Not only vegetable oils prepared from roasting process but also any food sample possessing volatiles could be targets for the SPME-GC/MS and electronic nose assays. Contents and types of pyrazines in sesame seed oil could be used as markers to track down the degree of roasting and oxidation during oil preparation.[Abstract] [Full Text] [Related] [New Search]