These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chemoenzymatic synthesis of (2R,3R,4R)-dehydroxymethylepoxyquinomicin (DHMEQ), a new activator of antioxidant transcription factor Nrf2.
    Author: Niitsu Y, Hakamata M, Goto Y, Higashi T, Shoji M, Sugai T, Umezawa K.
    Journal: Org Biomol Chem; 2011 Jun 21; 9(12):4635-41. PubMed ID: 21541373.
    Abstract:
    Dehydroxymethylepoxyquinomicin (DHMEQ, 1a) is a specific and potent inhibitor of NF-κB, and it is now being developed as an anti-inflammatory and anticancer agent. While previously only the (2S,3S,4S)-form had been available from the racemate by using lipase-catalyzed enantioselective resolution, in the present study a new route for production of the (2R,3R,4R)-form was established by use of a chemoenzymatic approach. (1R*,2R*,3R*)-2,3-Epoxy-5-N-[(2-hydroxybenzoyl)amino]-4,4-dimethoxycyclohex-5-en-1-ol (2a) was hexanoylated on both secondary and phenolic hydroxy groups, and subjected to Burkholderia cepacia lipase-catalyzed hydrolysis. The reaction proceeded in a highly enantioselective manner (E >500) to give (1S,2S,3S)-2a in an enantiomerically pure state. Several chemical steps of transformation from the enzyme reaction product gave (2R,3R,4R)-DHMEQ (1a) without any loss of stereochemical purity. Moreover, we newly found that (2R,3R,4R)-DHMEQ activated Nrf2, which is a transcription factor that induces the expression of multiple antioxidant enzymes. It activated Nrf2 in a promoter reporter assay. It also increased the expression of target antioxidant proteins and cancelled ROS-induced cell death in a neuronal cell line. Thus, (2R,3R,4R)-DHMEQ was efficiently prepared by a newly designed route using lipase, and it may be useful as a new anti-inflammatory agent.
    [Abstract] [Full Text] [Related] [New Search]