These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Oxidative stress in spiral ganglion cells of pigmented and albino guinea pigs exposed to impulse noise. Author: Xiong M, He Q, Lai H, Wang J. Journal: Acta Otolaryngol; 2011 Sep; 131(9):914-20. PubMed ID: 21542672. Abstract: CONCLUSIONS: The results suggest that melanin inhibits formation of reactive oxygen species (ROS) and prevents apoptosis in spiral ganglion cells (SGCs) of pigmented guinea pigs following impulse noise. OBJECTIVE: The stria vascularis of pigmented guinea pig cochlea contains melanocytes that produce melanin, which has a protective effect on noise-induced hair cell damage through its antioxidant property. ROS are involved in cochlear damage induced by impulse noise trauma. The purpose of the present study was to investigate the oxidative stress in SGCs of pigmented and albino guinea pigs after exposure to impulse noise. METHODS: Pigmented and albino guinea pigs were exposed to impulse noise. Auditory thresholds were assessed by sound-evoked auditory brainstem response (ABR) before impulse noise exposure and 72 h after impulse noise exposure. 4-Hydroxynonenal (HNE) was used as a histochemical marker of ROS formation, and active-caspase-3 (cas-3) served as a marker for apoptosis. 4-HNE and cas-3 were determined immunohistochemically. Hair cell damage was analyzed by scanning electron microscopy. RESULTS: The rates of 4-HNE-positive and cas-3-positive SGCs in pigmented guinea pigs were much less than those for albino guinea pigs. Correspondingly, there was less hair cell damage and reduced ABR threshold shifts in pigmented guinea pigs.[Abstract] [Full Text] [Related] [New Search]