These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Lung-cancer chemoprevention by induction of synthetic lethality in mutant KRAS premalignant cells in vitro and in vivo. Author: Huang S, Ren X, Wang L, Zhang L, Wu X. Journal: Cancer Prev Res (Phila); 2011 May; 4(5):666-73. PubMed ID: 21543344. Abstract: Lung cancer is the leading cause of cancer death in both men and women in the United States, with a low 5-year survival rate despite improved treatment strategies. These data underscore the great need for effective chemoprevention of this cancer. Mutations and activation of KRAS occur frequently in, and are thought to be a primary driver of the development of, non-small cell lung cancers (NSCLC) of the adenocarcinoma subtype. In this study, we developed a new approach for the chemoprevention of NSCLC involving specific targeting of apoptosis in mutant KRAS cells. This approach is based on a synthetic lethal interaction among TNF-related apoptosis-inducing ligand (TRAIL), the second mitochondria-derived activator of caspase Smac/DIABLO (Smac), and KRAS. Mutational activation of KRAS modulated the expression of TRAIL receptors by upregulating death receptors and downregulating decoy receptors. Furthermore, oncogenic KRAS repressed cellular FADD-like interleukin 1β-converting enzyme (FLICE)-like inhibitory protein (c-FLIP) expression through activation of Erk/mitogen-activated protein kinase (MAPK)-mediated activation of c-Myc. Smac overcame KRAS-induced cell-survival signaling by antagonizing X-linked inhibitor of apoptosis protein (XIAP). Therefore, the combination of TRAIL and a small molecule mimic of Smac induced apoptosis specifically in mutant KRAS cells without harming normal cells. We further showed that short-term, intermittent in vivo treatment with TRAIL and Smac mimic induced apoptosis in tumor cells and reduced tumor burden in a murine model of KRAS-induced lung cancer. These results reflect the potential benefit of a selective therapeutic approach for the chemoprevention of NSCLC.[Abstract] [Full Text] [Related] [New Search]